[1] Guo, W.; He, Y.; Tang, X.; Wang, S.; Li, M.; Gao, G.; Xiao, P.; Lian, X.※, Insights into electrochemically anodic H2O2 synthesis on titanium dioxide in carbonate-based electrolytes. Applied Surface Science 2025, 691, 162669.
[2] Guo, W.; Tang, X.; Liao, H.; Peng J.; Lian, X.※, Theoretical screening of single-metal atom deposited on 2D BC3N2 monolayers for NO electrocatalytic reduction to NH3. Applied Surface Science 2025, 690, 162605.
[3] Guo, W.; Liao, H.; Zeng, W.; Tang, X.; Lian, X.※; Xiao, P.; Gao, G., 3d transition metal anchored boron nitride edge for CO2 reduction reaction: A DFT study. Chemical Physics 2025, 592, 112616.
[4] Guo, W.; Li, M.; Wang, S.; He, Y.; Zhou, Y.※; Lian, X.※, Photoelectrochemical synthesis of hydrogen peroxide from saline water via the two-electron water oxidation reaction, Langmuir 2024, 40, 20186-20194.
[5] Tang, X.; Liao, H.; Zeng, W.; Guo, W.※; Lian, X, Computational screening of single-atom catalysts supported on Al12N12 nanocage for nitrogen reduction reaction. Materials Today Communications 2024, 40, 109509.
[6] Lian, X.; Zeng, W.; Tang, X.; Liao, H.; Guo, W.※; Zhang, Y.; Gao, G., H2O2 decomposition on X12Y12 (X = B, Al, Ga and Y = N, P) nanocage catalysts: a density functional theory study. Reaction Kinetics, Mechanisms and Catalysis 2024, 137, 1939-1949.
[7] Lian, X.; Tang, X.; Liao, H.; Guo, W.※; Zhang, Y.; Gao, G., Theoretical screening of double‑atom metals anchored on defective boron nitride for N2 reduction. Reaction Kinetics, Mechanisms and Catalysis 2024, 137, 3241-3251.
[8] Ha, M.; Tang, S.; Guo, W.※; Lian, X.; Zhou, Y.※, Tuning the Selectivity and Activity of Graphite for the Two-Electron Water Oxidation Reaction via Doping with Heteroatoms: A Density Functional Theory Study. Russian Journal of General Chemistry 2024, 93 (12), 3183-3187.
[9] Guo, W.; Wang, S.; Xie, Y.; Fang, C.※; Liu, L.; Lou, Q.※; Lian, X.※; Henkelman, G., Hydrogen Peroxide Synthesis via Electrocatalytic Water Oxidation on sp3 and sp2 Carbon Materials Mediated by Carbonates and Bicarbonates. ACS Sustainable Chemistry & Engineering 2023, 11, 12114-12122.
[10] Zeng, W.; Tang, X.; Duan, H.; Guo, W.※; Lian, X.※, Regulating catalytic activity of C2N for the CO oxidation by N2O via deposition of metallic elements: A density functional theory study. Materials Today Communications 2023, 36, 106629.
[11] 谢银琼,唐诗,王珊珊,连欣,郭文龙※,刘玺※, Sb2O3/BiVO4/WO3异质结构建及光电催化合成过氧化氢. 无机化学学报 2023, 39 (3), 433-442.
[12] 谢银琼, 夏利鑫, 卢珠菁, 连欣, 郭文龙※, 刘 玺※, Cr3+、In3+、Sb3+离子掺杂BiVO4电催化氧化水产过氧化氢. 功能材料 2023, 54 (4), 224-230.
[13] Lian, X.; Duan, H.; Zeng, W.; Yu, B.; Guo, W.※; Lou, Q.※, Kinetics investigation of the oxygen evolution reaction on the characteristic facets of γ-Cu3V2O8. Molecular Catalysis 2022, 528, 112493.
[14] Lian, X.; Duan, H.; Zeng, W.; Guo, W.※, Theoretical insight into the reaction mechanism of ammonia dehydrogenation on iron-based clusters. Materials Today Communications 2022, 32, 104088.
[15] Guo, W.; Xie, Y.; Tang, S.; Yu, B.; Lian, X.※; Henkelman, G.; Liu, X.※, H2O2 formation mechanisms on the (112) and (310) facets of SnO2 via water oxidation reaction with the participation of Bicarbonate: DFT and experimental Investigations. Applied Surface Science 2022, 596, 153634.
[16] Guo, W.; Xie, Y.; Liu, Y.; Shang, S.; Lian, X.※; Liu, X.※, Effects of Sb2O3 polymorphism on the performances for electrocatalytic H2O2 production via the two-electron water oxidation reaction. Applied Surface Science 2022, 606, 155006.
[17] Guo, W.; Shu, S.; Zhang, T.; Tao, Y.; Xie, Y.; Liu, X.※, An Inorganic–Organic Hybrid Polymer Cocatalyst for Photoelectrochemical Water Oxidation with Dual Functions of Accelerating Kinetics and Improving Charge Transfer. CCS Chemistry 2022, 4 (3), 889-898.
[18] Wang, Y.; Lian, X.; Zhou, Y.; Guo, W.※; He, H.※, Synthesis and characterization of Sb2O3: a stable electrocatalyst for efficient H2O2 production and accumulation and effective degradation of dyes. New Journal of Chemistry 2021, 45 (20), 8958-8964.
[19] Lian, X.; Tian, S.; Wang, S.; Lin, Y.; Liu, Y.; Li, Y.; Guo, W.※, Influence mechanisms of the surface morphologies on the elementary diffusion kinetics on the Cu (110) surface. Computational Materials Science 2021, 188, 110234.
[20] Lian, X.; Guo, W.※; He, B.; Yu, B.; Chen, S.; Qin, D.; Chen, F., Insights of the mechanisms for CO oxidation by N2O over M@Cu12 (M = Cu, Pt, Ru, Pd, Rh) core-shell clusters. Molecular Catalysis 2020, 494, 111126.
[21] Guo, W.; Wang, Y.; Lian, X.※; Nie, Y.; Tian, S.; Wang, S.; Zhou, Y.※; Henkelman, G., Insights into the multiple effects of oxygen vacancies on CuWO4 for photoelectrochemical water oxidation. Catalysis Science & Technology 2020, 10 (21), 7344-7351.
[22] Guo, W.; Shu, S.; Zhang, T.; Jian, Y.; Liu, X.※, Stable d10 Metal–organic framework exhibiting bifunctional properties of photocatalytic hydrogen and oxygen evolution. ACS Applied Energy Materials 2020, 3 (3), 2983-2988.
[23] Guo, W.; Lian, X.※; Nie, Y.; Hu, M.; Wu, L.; Gao, H.; Wang, T., Facile growth of β-Cu2V2O7 thin films and characterization for photoelectrochemical water oxidation. Materials Letters 2020, 258,126842.
[24] Guo, W.; Lian, X.※, Kinetics mechanism insights into the oxygen evolution reaction on the (110) and (022) crystal facets of β-Cu2V2O7. Catalysis Science & Technology 2020, 10 (15), 5129-5135.
[25] Lian, X.; Guo, W.※, He, B.; Lin, Y.; Xu, P.; Yi, H.; Chen, S., Comparison of O–H and C–H activation of methanol on Ni-based cluster: a DFT investigation, Molecular Physics, 2020, 118, 12, e1685689.
[26] Lian, X.; Guo, W.※, Nie, Y.※; Xu, P.; Yi, H.; He, B.; Chen, S., A density functional study of water dissociation on small cationic, neutral, and anionic Ni-based alloy clusters, Chemical Physics, 2019, 521, 44–50.
[27] Xiong, Y.; Yang, L.; He, H.; Wan, J.; Xiao, P.※; Guo, W.※, Enhanced charge separation and transfer by Bi2MoO6@Bi2Mo2O9 compound using SILAR for photoelectrochemical water oxidation, Electrochimica Acta, 2018, 264, 26-35.
[28] Guo, W.; Tang, D.; Mabayoje, O.; Wygant, B.; Xiao, P.; Zhang, Y.※; Mullins, C.※, A Simplified Successive Ionic Layer Adsorption and Reaction (s-SILAR) Method for Growth of Porous BiVO4 Thin Films for Photoelectrochemical Water Oxidation, Journal of The Electrochemical Society, 2017, 164, H119-H125.
[29] Guo, W.; Duan, Z.; Mabayoje, O.; Chemelewski, W.; Xiao, P.; Henkelman, G.; Zhang, Y.※; Mullins, C.※, Journal of The Electrochemical Society, 2016, 163, H970-H975.
[30] Guo, W.; Chemelewski, W.; Mabayoje, O.; Xiao, P.; Zhang, Y.※; Mullins, C.※, Synthesis and Characterization of CuV2O6 and Cu2V2O7: Two Photoanode Candidates for Photoelectrochemical Water Oxidation, Journal of Physical Chemistry C, 2015, 119, 27220−27227.
[31] Guo, W.; Lian, X.; Xiao, P.; Liu, F.; Yang, Y.; Zhang, Y.; Zhang, X., DFT studies on the interaction of PtxRuyMz (M = Fe, Ni, Cu, Mo, Sn, x + y + z = 4, x ≥ 1, y ≥ 1) alloy clusters with O2, Molecular Physics, 2015, 113, 8, 854–865.
[32] Guo, W.; Tian, W.; Lian, X.; Liu, F.; Zhou, M.; Xiao, P.; Zhang, Y., A comparison of the dominant pathways for the methanol dehydrogenation to CO on Pt7 and Pt7-xNix (x = 1, 2, 3) bimetallic clusters: A DFT study, Computational and Theoretical Chemistry, 2014, 1032, 73–83.