少妇白洁

在职教师
当前位置: 少妇白洁 >> 师资队伍 >> 在职教师 >> 专任教师 >> 副高级 >> 正文
副高级

个人简介

郭文龙:男,博士,副教授,硕士生导师,联系方式:Email: gwlcqnu@baijie18.com

学习和工作经历

2020-至今,少妇白洁 ,少妇白洁 ,副教授

2017-2020,少妇白洁 ,少妇白洁 ,讲师

2014-2016,美国得克萨斯大学奥斯汀分校,联合培养博士

2011-2017,重庆大学,化学与化工学院(硕博连读)

教学工作:

主讲《材料研究方法与测试技术》、《材料化学专业实验》、《工程制图》、《复合材料》等课程。作为第二完成人获批国家级虚拟仿真实验一流本科课程1项,主持建设校级一流课程1项,指导学生获得全国大学生实验技能大赛西南赛区二等奖1项,发表教改论文5篇。

科研与学术工作经历:

主要致力于开发高效、稳定且低成本的新型阳极材料,用于(光)电催化分解水制氢及合成高附加值产物,同时开展表界面催化反应机理密度泛函理论计算研究。目前在CCS Chemistry,ACS Sustainable Chemistry & Engineering,Langmiur,Journal of Physical Chemistry C,Electrochimica Acta等国内外主流学术期刊发表学术论文40余篇,论文他引累计1500余次,H-index 20。

研究领域:

(1) 重庆市自然科学基金面上项目(CSTB2025NSCQ-GPX1022)主持,在研;

(2) 重庆市教委科学技术研究项目(KJQN202400547)主持,在研;

(3) 重庆市博士后研究项目特别资助(2023CQBSHTB2036)主持,结题;

(4) 重庆市自然科学基金面上项目(cstc2020jcyj-msxmX0735)主持,结题;

(5) 重庆市教委科学技术研究项目(KJQN201800515)主持,结题;

(6) 少妇白洁 校级科研项目(17XLB015)主持,结题。

获奖情况:

获2024年度少妇白洁 “优秀教师”

获2021-2022学年少妇白洁 “教学优秀奖”

获2019-2020学年少妇白洁 “教学优秀奖”

获少妇白洁 第七届青年教师教学技能竞赛三等奖

代表论文

[1] Guo, W.; He, Y.; Tang, X.; Wang, S.; Li, M.; Gao, G.; Xiao, P.; Lian, X.※, Insights into electrochemically anodic H2O2 synthesis on titanium dioxide in carbonate-based electrolytes. Applied Surface Science 2025, 691, 162669.

[2] Guo, W.; Tang, X.; Liao, H.; Peng J.; Lian, X.※, Theoretical screening of single-metal atom deposited on 2D BC3N2 monolayers for NO electrocatalytic reduction to NH3. Applied Surface Science 2025, 690, 162605.

[3] Guo, W.; Liao, H.; Zeng, W.; Tang, X.; Lian, X.※; Xiao, P.; Gao, G., 3d transition metal anchored boron nitride edge for CO2 reduction reaction: A DFT study. Chemical Physics 2025, 592, 112616.

[4] Guo, W.; Li, M.; Wang, S.; He, Y.; Zhou, Y.※; Lian, X.※, Photoelectrochemical synthesis of hydrogen peroxide from saline water via the two-electron water oxidation reaction, Langmuir 2024, 40, 20186-20194.

[5] Tang, X.; Liao, H.; Zeng, W.; Guo, W.※; Lian, X, Computational screening of single-atom catalysts supported on Al12N12 nanocage for nitrogen reduction reaction. Materials Today Communications 2024, 40, 109509.

[6] Lian, X.; Zeng, W.; Tang, X.; Liao, H.; Guo, W.※; Zhang, Y.; Gao, G., H2O2 decomposition on X12Y12 (X = B, Al, Ga and Y = N, P) nanocage catalysts: a density functional theory study. Reaction Kinetics, Mechanisms and Catalysis 2024, 137, 1939-1949.

[7] Lian, X.; Tang, X.; Liao, H.; Guo, W.※; Zhang, Y.; Gao, G., Theoretical screening of double‑atom metals anchored on defective boron nitride for N2 reduction. Reaction Kinetics, Mechanisms and Catalysis 2024, 137, 3241-3251.

[8] Ha, M.; Tang, S.; Guo, W.※; Lian, X.; Zhou, Y.※, Tuning the Selectivity and Activity of Graphite for the Two-Electron Water Oxidation Reaction via Doping with Heteroatoms: A Density Functional Theory Study. Russian Journal of General Chemistry 2024, 93 (12), 3183-3187.

[9] Guo, W.; Wang, S.; Xie, Y.; Fang, C.※; Liu, L.; Lou, Q.※; Lian, X.※; Henkelman, G., Hydrogen Peroxide Synthesis via Electrocatalytic Water Oxidation on sp3 and sp2 Carbon Materials Mediated by Carbonates and Bicarbonates. ACS Sustainable Chemistry & Engineering 2023, 11, 12114-12122.

[10] Zeng, W.; Tang, X.; Duan, H.; Guo, W.※; Lian, X.※, Regulating catalytic activity of C2N for the CO oxidation by N2O via deposition of metallic elements: A density functional theory study. Materials Today Communications 2023, 36, 106629.

[11] 谢银琼,唐诗,王珊珊,连欣,郭文龙※,刘玺※, Sb2O3/BiVO4/WO3异质结构建及光电催化合成过氧化氢. 无机化学学报 2023, 39 (3), 433-442.

[12] 谢银琼, 夏利鑫, 卢珠菁, 连欣, 郭文龙※, 刘 玺※, Cr3+、In3+、Sb3+离子掺杂BiVO4电催化氧化水产过氧化氢. 功能材料 2023, 54 (4), 224-230.

[13] Lian, X.; Duan, H.; Zeng, W.; Yu, B.; Guo, W.※; Lou, Q.※, Kinetics investigation of the oxygen evolution reaction on the characteristic facets of γ-Cu3V2O8. Molecular Catalysis 2022, 528, 112493.

[14] Lian, X.; Duan, H.; Zeng, W.; Guo, W.※, Theoretical insight into the reaction mechanism of ammonia dehydrogenation on iron-based clusters. Materials Today Communications 2022, 32, 104088.

[15] Guo, W.; Xie, Y.; Tang, S.; Yu, B.; Lian, X.※; Henkelman, G.; Liu, X.※, H2O2 formation mechanisms on the (112) and (310) facets of SnO2 via water oxidation reaction with the participation of Bicarbonate: DFT and experimental Investigations. Applied Surface Science 2022, 596, 153634.

[16] Guo, W.; Xie, Y.; Liu, Y.; Shang, S.; Lian, X.※; Liu, X.※, Effects of Sb2O3 polymorphism on the performances for electrocatalytic H2O2 production via the two-electron water oxidation reaction. Applied Surface Science 2022, 606, 155006.

[17] Guo, W.; Shu, S.; Zhang, T.; Tao, Y.; Xie, Y.; Liu, X.※, An Inorganic–Organic Hybrid Polymer Cocatalyst for Photoelectrochemical Water Oxidation with Dual Functions of Accelerating Kinetics and Improving Charge Transfer. CCS Chemistry 2022, 4 (3), 889-898.

[18] Wang, Y.; Lian, X.; Zhou, Y.; Guo, W.※; He, H.※, Synthesis and characterization of Sb2O3: a stable electrocatalyst for efficient H2O2 production and accumulation and effective degradation of dyes. New Journal of Chemistry 2021, 45 (20), 8958-8964.

[19] Lian, X.; Tian, S.; Wang, S.; Lin, Y.; Liu, Y.; Li, Y.; Guo, W.※, Influence mechanisms of the surface morphologies on the elementary diffusion kinetics on the Cu (110) surface. Computational Materials Science 2021, 188, 110234.

[20] Lian, X.; Guo, W.※; He, B.; Yu, B.; Chen, S.; Qin, D.; Chen, F., Insights of the mechanisms for CO oxidation by N2O over M@Cu12 (M = Cu, Pt, Ru, Pd, Rh) core-shell clusters. Molecular Catalysis 2020, 494, 111126.

[21] Guo, W.; Wang, Y.; Lian, X.※; Nie, Y.; Tian, S.; Wang, S.; Zhou, Y.※; Henkelman, G., Insights into the multiple effects of oxygen vacancies on CuWO4 for photoelectrochemical water oxidation. Catalysis Science & Technology 2020, 10 (21), 7344-7351.

[22] Guo, W.; Shu, S.; Zhang, T.; Jian, Y.; Liu, X.※, Stable d10 Metal–organic framework exhibiting bifunctional properties of photocatalytic hydrogen and oxygen evolution. ACS Applied Energy Materials 2020, 3 (3), 2983-2988.

[23] Guo, W.; Lian, X.※; Nie, Y.; Hu, M.; Wu, L.; Gao, H.; Wang, T., Facile growth of β-Cu2V2O7 thin films and characterization for photoelectrochemical water oxidation. Materials Letters 2020, 258,126842.

[24] Guo, W.; Lian, X.※, Kinetics mechanism insights into the oxygen evolution reaction on the (110) and (022) crystal facets of β-Cu2V2O7. Catalysis Science & Technology 2020, 10 (15), 5129-5135.

[25] Lian, X.; Guo, W.※, He, B.; Lin, Y.; Xu, P.; Yi, H.; Chen, S., Comparison of O–H and C–H activation of methanol on Ni-based cluster: a DFT investigation, Molecular Physics, 2020, 118, 12, e1685689.

[26] Lian, X.; Guo, W.※, Nie, Y.※; Xu, P.; Yi, H.; He, B.; Chen, S., A density functional study of water dissociation on small cationic, neutral, and anionic Ni-based alloy clusters, Chemical Physics, 2019, 521, 44–50.

[27] Xiong, Y.; Yang, L.; He, H.; Wan, J.; Xiao, P.※; Guo, W.※, Enhanced charge separation and transfer by Bi2MoO6@Bi2Mo2O9 compound using SILAR for photoelectrochemical water oxidation, Electrochimica Acta, 2018, 264, 26-35.

[28] Guo, W.; Tang, D.; Mabayoje, O.; Wygant, B.; Xiao, P.; Zhang, Y.※; Mullins, C.※, A Simplified Successive Ionic Layer Adsorption and Reaction (s-SILAR) Method for Growth of Porous BiVO4 Thin Films for Photoelectrochemical Water Oxidation, Journal of The Electrochemical Society, 2017, 164, H119-H125.

[29] Guo, W.; Duan, Z.; Mabayoje, O.; Chemelewski, W.; Xiao, P.; Henkelman, G.; Zhang, Y.※; Mullins, C.※, Journal of The Electrochemical Society, 2016, 163, H970-H975.

[30] Guo, W.; Chemelewski, W.; Mabayoje, O.; Xiao, P.; Zhang, Y.※; Mullins, C.※, Synthesis and Characterization of CuV2O6 and Cu2V2O7: Two Photoanode Candidates for Photoelectrochemical Water Oxidation, Journal of Physical Chemistry C, 2015, 119, 27220−27227.

[31] Guo, W.; Lian, X.; Xiao, P.; Liu, F.; Yang, Y.; Zhang, Y.; Zhang, X., DFT studies on the interaction of PtxRuyMz (M = Fe, Ni, Cu, Mo, Sn, x + y + z = 4, x ≥ 1, y ≥ 1) alloy clusters with O2, Molecular Physics, 2015, 113, 8, 854–865.

[32] Guo, W.; Tian, W.; Lian, X.; Liu, F.; Zhou, M.; Xiao, P.; Zhang, Y., A comparison of the dominant pathways for the methanol dehydrogenation to CO on Pt7 and Pt7-xNix (x = 1, 2, 3) bimetallic clusters: A DFT study, Computational and Theoretical Chemistry, 2014, 1032, 73–83.